sampling distribution
Mean
Xˉ=nX1+...+Xn=n1∑Xi
- mina∑(x1−a)2=∑(xi−xˉ)2
- xˉ使得xi的距离和最短
- E(Xˉ)=μ
- Var(Xˉ)=nσ2
- 可以看出,其方差随着n的增大减小,也就是说,增大样本量可以使得估计更为准确。
Variance
S=n−11∑(Xi−Xˉ)2
- (n−1)S2=∑i=1nxi2−nxˉ2
- E(S2)=σ2
Lemma
若X1,...,Xn 是来自同一分布的样本,令g(x)为它的一个函数,同时,若E(g(X1))和Var(g(X1))存在,则:
E(∑g(Xi))=n⋅E(g(X1))
Var(∑(Xi))=n⋅Var(g(X1))
考虑均值矩母函数与随机样本的关系:
MXˉ(t)=[MX(nt)]n
Theorem
Xˉ 和S2相互独立
Xˉ∼N(μ,nσ2)
σ2(n−1)S2∼χ2(n−1)
为什么自由度为n−1?
- 在用样本方差估计总体方差时会需要用到样本均值,而样本均值就决定了变量值的总数。
Convolution theorem
若X和Y是两个相互独立的连续随机变量,那么Z=X+Y的pdf为:
fZz=∫−∞+∞fX(w)fY(z−w)dw
Order statistics
- The order statistics of a random sample X1,...,Xn are the sample values placed in ascending order. denoted by X(1),...X(n)
Distribution
discrete case
Define Pi=p1+p2+...+pi,then:
P(X(j)≤xi)=∑k=jnCnkPik(1−Pi)n−k
continuous case
fX(j)(x)=(j−1)!(n−j)!n!fX(x)[FX(x)]j−1[1−FX(x)]n−j
Joint distribution
fX(i),X(j)(u,v)=(i−1)!(j−1−i)!(n−j)!n!fX(u)fX(v)[FX(u)]i−1[FX(v)−FX(u)]j−i−1[1−FX(v)]n−j
Limit theory
Convergence in probability
A sequence of X1,X2,..., converges in probability to a r.v X, if for every ϵ>0:
n→∞limP(∣Xn−X∣≥ϵ)=0
- 可以使用切比雪夫不等式证明,样本均值依概率收敛到0
Weak law of large numbers
Let X1,X2,.. be i.i.d. with E(Xi)=μ and Var(Xi)=θ2<∞:
n→∞limP(∣Xˉ−μ∣<ϵ)=1
- 可以使用切比雪夫不等式证明,样本方差依概率收敛到0,符合弱大数定理
Almost sure convergence
A sequence of X1,X2,..., converges almost to a r.v X, if for every ϵ>0:
P(n→∞lim∣Xnˉ−X∣<ϵ)=1
Strong law of large numbers
Let X1,X2... be i.i.d. r.v.s with E(Xi)=μ and Var(Xi)=θ2<∞:
P(n→∞lim∣Xnˉ−μ∣<ϵ)=1
Convergence in distribution
A sequence of X1,X2,..., converges in distribution to a r.v X, if for every ϵ>0:
n→∞limFXn(x)=FX(x)
- 依分布收敛最弱
- 若满足依概率收敛,一定满足依分布收敛
Central limit theorem
Let X1,X2... be a sequence of i.i.d r.v.s whose mgfs exist in a neighborhood of 0. Let E(Xi)=μ and Var(Xi)=σ2>0.
σn(Xnˉ−μ)∼N(0,1)
Slutsky's Theorem
Let Xn→X in distribution and Yn→a,a constant, in probability, then:
- YnXn→aX in distribution
- Xn+Yn→X+a in distribution
这告诉我们,乘积和极限可以交换位置。因此不难得到:
Snn(Xnˉ−μ)=Snσσn(Xnˉ−μ)→N(0,1)